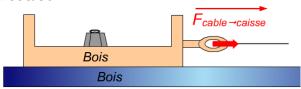


<u>Objectif du TP</u>: Découverte de la modélisation des liaisons réelles Matériel disponible :

- Logiciel FROTTEMENT
- o Guide du Dessinateur Industriel

PROBLEMATIQUE:


Cas de systèmes où le frottement est nuisible :

Cas de systèmes où le frottement est indispensable :

0

I- INFLUENCE DU POIDS :

L'expérience est menée sur le déplacement d'une caisse sur le sol. Le but est de déterminer si la variation du poids de la caisse à une influence sur l'effort de frottement engendré par le contact caisse/sol.

Nous allons augmenter progressivement la force du câble sur la caisse jusqu'à atteindre la limite d'adhérence. Reporter le résultat dans le tableau ci-dessous. Effectuer le même travail pour les différents cas de chargement.

Masse du chargement ()			
Poids du chargement ()			
Effort du câble sur la caisse nécessaire pour vaincre le frottement F _{lim} ()			
<u>†</u>			

Tracer $F_{lim} = f$ (poids).

	Caisse : bois Sol : bois
	→

Interprétation des résultats :

II- INFLUENCE DES MATERIAUX EN CONTACT :

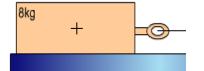
Nous effectuons à présent la même manipulation en gardant une charge de 8kg, mais en modifiant les matériaux des surfaces de contact.

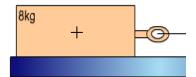
Reporter les résultats dans le tableau suivant.

Couple de matériaux			
Poids du chargement ()			
Effort du câble sur la caisse nécessaire pour vaincre le frottement F _{lim} ()			

Interprétation des résultats :

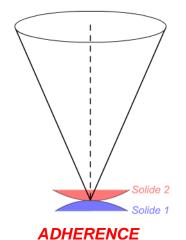
III- INTERPRETATION DES RESULTATS - MODELISATOIN DES LIAISONS REELLES :

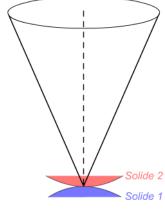

Après avoir visionné la partie "interprétation des résultats" sur le logiciel, représenter les efforts agissant sur la caisse dans le cas des liaisons réelles (c'est-à-dire que les frottements ne sont pas négligés).


Cas de charge : 8kg

Matériaux en contact : bois – bois \Rightarrow f = 0,35 \Rightarrow f = ____

Echelle : 1cm ⇔ 20N


Au repos


Tentative de mouvement... mais sans résultat. F_{câble→caisse} = 20 N Mouvement relatif entre la caisse et le sol : il n'y a plus équilibre F_{câble→caisse} = 50 N

ADHERENCE

FROTTEMENT

Mise en place du cône de frottement et des composantes de l'effort de contact :

D'après la 2^{ème} partie, déterminer le coefficient de frottement des couples de matériaux étudiés.

f dépend _____

Relation entre f et f:

FROTTEMENT

Relation entre T et N :